
ELASTIC EFFECTS IN THE FLOW OF POLYMER SOLUTIONS IN CHANNELS 

OF VARIABLE CROSS SECTION AND A POROUS MEDIUM 

V. M. Entov and A. N. Rozhkov UDC 532.546:532.135 

The manifestation of elastic effects during the filtration of polymer solu- 
tions is analyzed theoretically. 

Motion in a channel of longitudinally varying cross section is an example of how La- 
grangian transience, in combination with viscoelasticity, may lead to unexpectedly strong 
effects. For example, in the flow of a liquid through a porous medium and in channels 
having a series of contractions and expansions, an anomalous increase in the pressure drop 
with a slight increase in flow rate is in a certain range of velocities. The pressure- 
drop increase may be one or two orders of magnitude and is seen even in the case of dilute 
solutions of polymers. Instability and hysteresis phenomena are also seen [1-3]. 

Below we examine these phenomena using the assumption that the intensive dilation to 
which elements of the liquid are subjected leads to substantial deformation of the macro- 
molecules (oriented dilation), which entails the creation of significant elastic stresses 
(see [4-7]). 

We will write the equations of motion in a channel in a hydraulic approximation, as- 
suming that all of the quantities are constant over the cross section of the flow. Here, 
considering the effects of oriented deformation to be predominant, we ignore friction 
against the wall and body forces. Then we obtain [8, 9]. 

fv = q : const ,  

Ovf o (pvV - -  of) of ( 1 ) p - - +  - - p - - ,  
Ot Ox Ox 

G = ' r - - p .  

We assume that the rheological behavior of the liquid is described by the model of a 
generalized Maxwell liquid in which ~ is a single-valued function of the reversible (elastic) 
component of the axial dilation X. We write the determining relations in the form 

d% O~ 0~, Ov 
--_ - -  +v -- ~ , - -  -- g(~), (2) 

dt Ot Ox Ox 0 

-- GMg(X), g(1) = O, g ' ( ~ ) ~ O .  ( 3 )  

Variants of rheological models of viscoelastic liquids differing in the specific form of 
the function r and, possibly, the dependence 0(X) of the relaxation time on elastic 
strain can be reduced to this form. The chosen form, with 8 = const and g = i, corresponds 
to the model of a "solution of elastic dumbbells." The study [9], where similar equations 
were used to analyze jet discharge and fiber formation, employed a different form more 
suitable for concentrated solutions and melts. 

Let the area of the channel cross section change periodically along the length with the 
period s It is natural to assume that during steady motion (in the reference frame of the 
observer) in a sufficiently long channel a periodic distribution T is established, a certain 
distance past the inlet section. In this case, integration of system (i) leads to the 
relation 
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Ap  p (x ~- l) - -  p (x) 1 c ~ dv 
dx. ( 4 )  

l l l �9 v dx 
X 

For  a p u r e l y  e l a s t i c  l i q u i d  (more p r e c i s e l y ,  f o r  an e l a s t i c  body ,  e = ~ ) ,  t h e  q u a n t i t i e s  
and v a r e  c o n n e c t e d  by a s i n g l e - v a l u e d  r e l a t i o n  b e c a u s e  z i s  d e p e n d e n t  o n l y  on t h e  d e g r e e  

of dilation~ The latter, just as velocity, is unambiguously expressed through the change 
in the cross-sectional area of the channel (see Eqs. (2) and (3)). In this case, it follows 
from (4) that Ap = 0. This conclusion, which seeems surprising at first glance, is a natural 
consequence of the absence of loss in the motion of an elastic body without friction through 
a channel of variable cross section (see [i0]). 

For steady motion, we find from (2) that 

(v/~) d~ /dx  = d v / d x - - g  (~)/0. (5 )  

Multiplying this equation by T(X)/v and integrating over the period, we obtain the following 
from (4) 

x+~ x+t ~g (~) 
a p  .... i ' ~ (~) a~ a x +  t' a~. 

�9 ~ dx Ov X X 

Due to the periodicity of the function x(x), the first integral is equal to zero. Then 
for the pressure drop we finally have 

Ap _. I ~:l ~ g ( ~ )  
dx. (6) l l 3 Ov 

X 

Thus, to find the pressure drop it is necessary to know the distribution of X along the 
channel. This can be obtained for a specified velocity field v = v(x) by integrating Eqs. 
(2) and (3). We do this below for certain special cases. For the present we note that the 
integral (6) can also be evaluated without specifying the explicit form of the function 
v = v(x). For this, we rewrite Eq. (5) in the form 

m z___ _- _ g(~__2 ( 7 )  
dx v Ov 

Let the velocity reach minimum values at the points x = x, + ms (m = 0, • i, ...). In- 
tegration of Eq. (7) from x, to x gives 

~* exp ( - -  i g ( ~ ) d x ~ '  ~ = ~ ( x , ) ,  v, = v ( x , ) .  (8 )  
- 7 - =  - " 

X ,  

It follows in particular from Eq. (8) that by virtue of the periodicity of the flow 

x .+l  

S g (~) dx = O. 
Ov 

X .  

This means that in the region of periodic flow there must necessarily be sections where 
T < 0, X < 1 for any flow velocity, i.e., the macromolecules are not only stretched along 
the flow but are even compressed. This is connected with the fact that in the dilation 
of the liquid in the contracting part of the channel, relaxation causes the macromolecules 
to be dilated somewhat less than the surrounding solvent. For the macromolecules to re- 
turn to their "initial position in the solvent" during compression in the expanding part 
of the channel, they must undergo "reverse motion" relative to the solvent. Such motion 
is possible only in the compressed state. 

It is natural to assume, however, that the compression relative to the equilibrium 
state is not great (this is shown below in several examples). Then it can be supposed that 
at point x, the orientation of the macromolecules is close to equilibrium, i.e., X, = i, 
and the value of g(X) is no greater than unity. 

In this case, with a sufficiently intensive flow, when 0v/s + ~, the integral in Eq. 
(8) approaches zero. Thus, 

X/v ~ i/v*. (9)  
Insertion of this equality into (6) gives 

Ap ,-., G j g~ 
- 7 -  - i v .  ~ - - U  (~) dx, ~ = v / v . ,  _ ( l o )  

To /valuate the integral (i0), we specify the value of 0 by two methods: in the form 
6 = 80 = const, and in the form proposed by Hinch [5] and De Gennes [6]: @ = @0l. The 
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Fig. i. Qualitative dependence of the change 
in pressure drop on flow rate. 

specific form of the dependence of 80 qn the molecular parameters can be found, for example, 
in [Ii]. 

With intensive flow, the macromolecules are in the dilated (but not to the limit) state 
in most of an elemental cell of the channel, which corresponds to g(l) = i. Then we have 
the following from (10) for the Hench-De Gennes case 

Ap G 
--~--,-- (ii) 

1 Oov, 

while when O is specified in the form O = O 0 it follows from (i0) that 

Ap  ~ ,  G , ( v / v , ) d x  , (12)  
l O0v, x 

which i s  o f  t h e  same o r d e r  o f  m a g n i t u d e  as  in  (11)  f o r  f l o w  in  a c h a n n e l  w i t h  a r e l a t i v e l y  
s l i g h t  change  in  v e l o c i t y .  

I t  f o l l o w s  f rom Eqs.  ( 1 1 ) - ( 1 2 )  t h a t  d u r i n g  i n t e n s i v e  f l o w  a t  a f a i r l y  h i g h  v e l o c i t y  (0 = 
Ov/s ~ 1 ) ,  t h e  p r e s s u r e  d rop  d e c r e a s e s  w i t h  an i n c r e a s e  in  t h e  v e l o c i t y  o f  t h e  l i q u i d .  Th i s  
result expresses the transition from viscoelastic behavior of the material to elastic with 
an increase in flow intensity. As was shown above, losses are absent in the case of elastic 
behavior. 

The process of transition to a regime corresponding to the above asymptotic solution 
can be described qualitatively as follows. The velocity of the liquid in the channel 
changes along the longitudinal coordinate in accordance with the profile of the channel 

v - -  q d v = q df  = v , [ ,  d [ - i .  (13)  
f ' dx  f2 dx 

It follows from Eq. (13) that with an unaltered streamline distribution the velocity 
gradient increases with an increase in flow rate q (or, equivalently, with an increase in 
velocity v,). This means that the flow is not intensive for fairly low flow rates, i.e., 
the dilation of the liquid in the contracting part of the channel occurs too slowly to take 
the macromolecules out of the quasiequilibrium state; here, as noted above, T z O, so that 
Ap = 0. 

The transition to intensive flow (dv/dx > ~/00) occurs when flow rate increases above 
a critical value qs = ~/(00(df-i/dx)max )" With an increase in flow rate from qs to a cer- 
tain value qa the flow enters a regime corresponding to the above asymptotic solutions (ii) 
and (12), i.e., in the flow-rate interval (qs, qa) there is a change in (&p/s 
from zero to a value on the order of unity. It should be expected that in the case of a 
Hench-De Gennes liquid the interval (qs, qa) will be fairly narrow, since during intensive 
flow there is a sharp increase in relaxation time 0 = 00~. The latter helps the integral 
in (8) approach zero more rapidly with an increase in velocity. 

Figure i qualitatively depicts the dependence of pressure drop on flow rate caused by 
the above-examined viscoelastic mechanism (curves i). One feature of this dependence of 
the presence of a maximum and a descending characteristic. At large flow rates, when the 
contribution of the mechanism is small, we should expect pressure drop to be increasingly 
dependent on flow rate - similar to the case of a Newtonian fluid (see [3], for example)f 
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Fig. 2. Results of numerical calculation of transition of flow to a 
regime of periodic change in the elastic strain ~ along the channel 
for a Hench-De Gennes liquid and for different values of the inten- 
sity parameter S. Also shown is the change in the velocity and 
cross section along the channel. 

Fig. 3. Comparison of results of asymptotic study of the problem 
(dashed line) and results of a numerical calculation (solid lines) 
of the periodic flow regime for several specific relations V = V(X): 
i) V = i + i00 X 2 (I-X)2; 2) V = 1 + i000 X 2 (l-X)2; 3) V = 1 + i0 
sin ~X; 4) V = 1 + i0 (i - cos 2~X); 5) V = 1 + i0 X 2 (i - X2); 0 < 
X<I. 

In Fig. la this dependence corresponds to curve 2. The total flow-rate characteristic is 
shown by curve 3. Now let us assume that a flow in a channel with the flow-rate character- 
istic in Fig. la is created by a source with a specified pressure drop. Then an increase 
in the head from zero will be accompanied by a continuous increase in flow rate until the 
pressure drop reaches (Ap/s i. After this, there will be a sudden increase in flow rate, 
in accordance with curve i', to the value qN- If the pressure drop then begins to decrease, 
the change in flow rate will follow curve 2. Here, we may realize situations which would 
be impossible to obtain with a continuous increase in flow rate from zero. A further de- 
crease in pressure leads the solution to jump to the ascending branch of curve i. Thus, the 
dependence of the flow-rate change on the pressure-drop change has a hysteresislike char- 
acter, which agrees with the experimental data [3]. In several cases, however, the effects 
of oriented elasticity may prove comparable to the effects of shear viscosity in a broad 
range of flow rates (which is determined by the geometry of the channel and the ratio of the 
viscous and elastic properties of the liquid), and the resulting pressure drop here may be 
a monotonically increasing function of flow rate (see curve 3 in Fig. ib). Such a situation 
will obviously not lead to any hysteresis phenomena. This was evidently the situation seen 
in the experiments in [2]. 

Now let us examine the question of the effect of k, and present results of quantitative 
calculations for specific flow models. 

We used the Hench model in the calculations. 

d~ ~ dV 

d X  V d X  

For this model, from (2) and (3) we have 

1 I -- %-~ 

V@ 1 --- ~ / V - N  ' (14)  

x = x / t ,  v = v / v , ,  o :Oov,/t, g(~)= (1 --~-~)/(1--z/V~). 

This equation was integrated numerically with the initial condition I(0) = 1 to the 
point of initiation of the periodic regime for different channel profiles characterized by 
the relation V(X) and different 8; the molecular parameter N is the number of Kuhn segments 
in a macromolecule and we took a value of 104 for it. As an example, Fig. 2 shows the dis- 
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TABLE i. Comparison of Asymptotic Results with Experimental 
Data 

Lit. source ,  
po lymer  

[ 2], po l ye t hy l -  

ene  FRA 

[2]. polyethyl--  
e n e  

WSR = 301 

[ 3] ,  p o l y e t h y l -  
e n e  

WSR~301  

Conc. and 
Reynolds number 

c ..... 6 . [0  '~ 

R e g  (0,I;  0,5) 

c .= 24.10 -6  

Re ~ (0,05; 0,2) 

c = 96. I0- ' ;  

Re ~ (0,01; 0,1) 

c =  20 .10 -~  
l~e C (0,2; 0,3) 
e -- 80- 10 -6  
ReG (0,1; 0,9) 

c =  160.10 -'~ 
R e ~  (0,06; 0,1) 

c = 5 0 . 1 0  -6  
Re e (80; 100) 

c = I00.10 -6  
Re -C (10; 20)" 

c = 200.10 -6  
Re ~ (500; 1000) 

) 
Mol. wto I ": i**" 

used in c a l J  -~ . . . .  , i 
cu la t ions  

9,7. I0 ~ 

1,0- 10 ~ 

9,7.10 6 

l,O. I(> 

9,7.1@; 

1 , 0 . 1 0  ~ 

4,2. i06 

4,2.10 '~ 

4 ,2 .10  'a 

4,2-106 

4,2.106 

4,2- 10 '; 

l'~-:O, 5 Y O,U 

1 ,2  .3,6 

0,04 O, 1 

0.65 2. l 

O ,02 0,05 

0.4 1,3 

0,01 0,03 

0,77 2,2  

0,38 1,1 

0,27 0,8  

0 ,37 1,1 

0,27 0.8  

0,69 2,03 

(J,P) rn~? xV3. v ,  
7s  N? 

v - - 0 . 5  v 2,0  

1173 "; ,:,8 

4 1,5 

746 222 

2,5 t ,0 

613 191 

2,1 0,82 

12 4 

3,90 1,3 

0 ,7  0 ,23 

3,51 I ,2 

0 ,7  0,23 

25,6 8 ,7  

tribution of I(X) for different flow intensities S in a channel with the distribution V(X) = 
1 + i00 X 2 (i -X) 2. As in the other results presented below, S = OmaxV'(X). The calcula- 
tions also confirm the closeness of I, to unity in expansions of pore channels. A rapid tran- 
sition to the periodic regime is typical. The pressure drop for the periodic solution was 
found from Eq. (4). 

The dependence of the ratio Ap/s on flow intensity S is shown in Fig. 3 for different 
channel profiles. While differing in their details, these dependences have a common feature: 
The presence of the maximum at S ~_ i. Asymptotic formula (ii), the results of calculations 
with which are shown by the dashed line in Fig. 3, qualitatively correctly describe the be- 
havior of the solution at S > 2. 

Also shown are values of strain I, reached at the point of the minimum velocity x,. The 
fact that the actual value of I, is somewhat less than unity leads to exaggeration of the 
results calculated from asymptotic formula (ii). 

Let us compare the results obtained with available empirical data from [2, 3]. The 
comparison will he performed according to the values 

Se  = Oo (Or i 0X)max, Ie  = ((AP)max / I)/(G / (0 o v , ) ) .  ( 1 5 )  

Here, (Sv/SX)ma x is the value of the maximum velocity gradient along the path at which the 
relationship between the pressure drop and flow rate deviates from linearity; (AP)ma x is the 
pressure-drop maximum. Here, for tests with a layer of spherical particles we took v, _~ 2.2u, 
(Sv/Sx)ma x = 43.5u/d, where d is the diameter of the spheres. For the channel with periodic 
contractions v, = q/f,, (Sv/SX)ma x = 8q/(~d~), d is the diameter of the contraction. 

The rheological parameters e 0 and G were evaluated from the formulas [5, 6]" 

00 - :  6a~ t r0 / •  • == 3kT/(Nb") ,  O = n• (16) 

H e r e ,  t o  d e t e r m i n e  t h e  u n p e r t u r b e d  r a d i u s  o f  a m a c r o m o l e c u l e  i n  a s o l u t i o n  r 0 w e  u s e d  t h e  

relation [ii] 

r o -= bN ~ ( 1 7 ) 

with ~ = 0.5 (ideal chain) and v = 0.6 (real chain). 

The theoretical values of S E and I E have the order i; the experimental values calcul- 
ated with Eqs. (15)-(17) are shown in Table i. 
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The main difficulty in making a comparison is in the indeterminateness of the molec- 
ular mass M, which heavily affects the value of I E (as M5/2). It can be concluded from 
an analysis of the tabular data that the initiation of the effect of an anomalous in- 
crease in pressure is connected with the longest molecules, while the maximum of the effect 
is due to the shorter molecules which comprise the bulk of the polymer. It follows from 
Figs. 2 and 3 that in the region of the maximum of the phenomenon of anomalous pressure 
increase the relative elongations of the macromolecules are not so great (reaching several 
units), while the additional increase in pressure is of the order of G in terms of the 
period of the medium ~. For flow in a porous medium of permeability k, we have the estimate 

~ Vk. The additional pressure gradient due to elasticity is approximately G/~, while 
the main gradient ("viscous") is about ~u/k. According to the estimates made, at the maxi- 
mum of the effect u ~ d(~v/aX)max, (3v/~X)ma x ~ i/e 0. From this 

u,',~d/O o, Fuk ~ Fd/(kOo). 
Thus, the ratio of the additional pressure drop to the main pressure drop is of the 

order 
GkOo/ V k ~ d  ~ nr~. 

Thus, the additional increase in pressure due to elastic effects is asymptotically in- 
dependent of the permeability and is proportional in a dilute solution approximation to the 
fullness of the volume with macromolecular clusters; the resistance maximum is reached at 
filtration velocities ~k/e 0 which are lower, the lower the permeability of the medium. 

NOTATION 

t, time; x, longitudinal coordinate of channel; v, velocity of liquid flow; f, cross- 
sectional area of channel; x,, longitudinal coordinate corresponding to maximum cross sec- 
tion of channel; v,, f,, velocity and cross-sectional area at this point; p, density of 
liquid; q, volumetric flow rate; p, pressure; c, axial component of stress tensor; x, axial 
component of tensor of excess stresses; X, elastic elongation; 8, relaxation time; G, elas- 
tic modulus; g(k), function accounting for the absence of stresses in the liquid in the 
equilibrium state and nonlinear effects of the finite extensibility of the material; Ap, 
pressure drop on one element of the channel; ~, length of an elemental cell of the channel; 
m = 0, • i, ..., whole number; ~, number on the order of unity; X = x/k; V = v/v,; e = 
80v,/~; ~, shear viscosity of liquid; b, length of Kuhn segment; N, number of Kuhn seg- 
ments in a macromolecule; kT, Boltzmann temperature; ~, elastic constant of a macromole- 
cule; n, number of macromolecules per unit volume; r, distance between ends of macromole- 
cule; r0, size of macromolecule in equilibrium conformation; d, diameter of spheres used 
to model a porous medium or diameter of a contraction in an axisymmetric channel; u, speci- 
fic flow rate; S = (3v/aX)maxe0, index of flow intensity; c, polymer concentration; M, 
molecular weight of polymer; k, porosity of medium. 
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RECONSTRUCTION OF BED PRESSURE WITH DATA 

OF NORMAL WELL OPERATION 

R. N. Bakhtizin and M. M. Khasanov UDC 622.276.031 

The article suggests an algorithm for reconstructing the bed pressure from 
measurements of pressure and yields of wells in the course of their normal 
operation. 

In solving the problem of developing petroleum deposits it becomes necessary to check 
changes of pressure in the oil bearing bed. The existing methods consist in estimating 
the bed pressure, i.e., the pressure that would establish itself at the bottom of a shut- 
down well after complete stoppage of inflow of liquid. At present this value is deter- 
mined chiefly by a depth manometer in the course of unsteady investigations involving 
shutdown of the well. In practice, it is often impossible or undesirable to shut down an 
operating well. Methods are therefore worked out which make it possible to estimate the 
bed pressure from data of normal well operation. 

All the known methods of estimating bed pressure are in essence methods of identifica- 
tionary nature, and they are not suitable for reconstructing the pressure distribution 
near an operating well. The lack of this kind of information complicates the mathematical 
modeling of the processes of oil extraction in the sense that it prevents the solution of 
nonsteady filtration in the traditional initial and boundary statement. Without an oper- 
ative estimate of the pressure distribution in the bed it is difficult to state the ini- 
tial conditions because for that it is necessary to solve successively a considerable num- 
ber of normal problems where the result of the preceding problem is taken as the initial 
condition for each problem upon change of the operating regime. 

In the present work the problem is reduced to restoring the initial condition (and 
thus also the subsequent states) for an equation of parabolic type from redefined boundary 
conditions. It is assumed that the time of piezoconductivity and the hydroconductivity 
of the bed are specified (they may be, e.g., determined previously in the course of non- 
steady investigations of wells [i]). The stated problem belongs to the class of inverse 
retrospective problems, and as is well known, it is a malposed problem. It is solved by 
the method of ordered minimization of the mean risk [2]; this makes it possible under 
conditions of the static approach to obtain guaranteed solutions (with a certain probability) 
from a limited amount of empirical data. 

Nonsteady filtration of petroleum in a well (s = i) or in a gallery of wells (s = 0) 
is described by the equation 

Op - -Lp- - -  1 . . . . .  0 ( x  ~ Op ) ,  X o < X < l ,  O < t < o o ,  (1 )  
Ot x ~ Ox Ox 

p (x, O) = q) (x), (2 )  

p (Xo, t) = q, (t), ( 3 )  

Op(1, t) _ 0 ,  ( 4 )  
Ox 
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